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ABSTRACT

The Cagniard-de Hoop method is ideally suited to the analysis of wave propagation
problens in stratified media. The method applies to the integral transform represen-
tation of the solution in the transform variables (sp) dual of the time and transverse
distance. The objective of the method is to make the p-integral take the form of a
forward Laplace transform, so that the cascade of the two integrals can be identified
as a forward and inverse transform, thereby making the actual integration unnecessary.
That is, the exponent, -sw(p) is set equal to -sr, with -r varying from some (re%!)
finite time to infinity. As usually presented. the p-integral is deformed onto a contour
on which the exponent is real and decreases to -o as p goes to infinity. We have found
that it is often easier to introduce a complex variable r for the exponent and carry out
the deformation of contour in the complex r-domain. In the r-domain the deformation
amounts to "closing down" the contour of integration around the real axis while taking
due account of singularities off this axis.

Typically, the method is applied to an integral that represents one body wave plus
other types of waves. In this approach, the saddle point of w(p) that produces the body
wave plays a crucial role because it is always a branch point of the integrand in the
r-domain integral. Furthermore, the paths of steepest ascent from the saddle point
are always the tails of the Cagniard path along which w(p) -- . That is, the image
of the pair of steepest ascent paths ia the p-domain is a double covering of a segment
of the Re r axis in the r-domain. The deformed contour in the p-domain will be on!y
the pair of steepest ascent paths unless the original integrand had other singularities
in the p-domain between the imaginary axis and this pair of contours. This motivates
the definition of a primary p-domain-the domain between the imaginary axis and the
steepest descent paths-and its image in the r-domain-the primary r-domain. In
terms of these regions, singularities in the primary p-domain have images in the pri-

mary r-dornain and the deformation of contour onto the real axis in the r-domain must
include contributions from these singularities.

This approach to the Cagniard-de Hoop method represents a return from de Hoop's
modification to Cagniard's original method, but with simplifications that make the
original method more tractable and straightforward. This approach is also reminiscent
of van der Waerden's approach to the method of steepest descents, which starts exactly

the same way. Indeed, after the deformation of contour in ,he r-domain, the user has
the choice of applying asymptotic analysis to the resulting "loop" integrals (Watson's
lemma) or continuing to obtain the exact, although usually implicit, time domain so-
lution by completing the Cagniard-de Hoop analysis.

In developing the method we examine the transformation from a frequency domain
representation of the solution (w) to a Laplace representation (s). Many users start
from the frequency domain representation of solutions of wave propagation problems.
There are issues of movement of singularities under the transformation from w to s to
be concerned with here. We discuss this anomaly in the context of the Sommerfeld

half-plane problem.
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INTRODUCTION

The Cagniard-de Hoop method, or the Cagniard (1939, 1962) method as modified

by de Hoop (1958), is ideally suited to the analysis of wave propagation problems in

stratified media. The method applies to the integral transform representation of the

solution in the transform variables (s,p) dual of the time and transverse distance,

typically of the form

u (r,z,s) = jr f(p)exp{-sw(p,r,z)} dp, (0.1)

with w having the form,
J

w(p, r, z) = pr + h3  p- . (0.2)
j=1

In this equation each hj represents the total vertical travel distance in layer j, includ-

ing multiple reflection path lengths on the trajectory from the source to an observation

point, (x, z). In a two-dimensional problem (x, z), r = lxi denotes the transverse range

and pj = 1/cj is the slowness in that layer. In a three-dimensional problem (x, y,

r = V/T77 and p is the component of the slowness vector which is colinear with the

vector, x = (x, y). Furthermore, p2 = 1c + q2 , with q the component of the slowness

vector in the orthogonal direction to x. The contour of integration F is the imaginary

p-axis. The integral (0.1) is also known as a generalized-ray wave constitutent or,

more simply, as a generalized ray (Spencer, 1960; Cisternas, et al., 1973).

The objective of the method is to make the slowness p-integral take the form of

a forward Laplace transform in time (possibly, a sum of such transforms). Each of

these will be of the form,

u,(r,z,s) = fW(p()) exp{-sT}dr. (0.3)

If this is accomplished, then the cascade of this integral with the inverse Laplace

transform from s back to time t ca:n be identified as a forward and inverse transform
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pair, making the actual inversion integration unnecessary. To achieve this, the contour

[-the imaginary axis- -is deformed onto a path of integration on which w(p) in (0.1)

is real and approaches infinity. Then w(p) is set equal to a real variable 7 that varies

from some finite time to infinity.

Excellent expositions of the Cagniard-de Hoop method nay be found in the exten-

sive papers of A. T. De Hoop, including his thesis (1958) and his recent tutorial (1988);

also, Aki and Richards (1980) and van der Hijden (1987) are important sources.

The presentation of the method often begins with a "folding over" of the contour

so that one endpoint of the integral is at p = 0. This leads to a representation

for u(r, z, s) as the imaginary part of an integral in r. In this approach the p-path

contains a section of contour starting from p = 0 where the integrand is real, yielding

a zero contribution to the final result. However, this one-sided representation is not

essential to the method and we will work with the original two-sided representation

allowing the upper and lower contributions to combine at the end of the analysis, in

particular canceling away the initial segment just discussed. Van der Hijden is an

exception; he also applies the Cagniard-de Hoop method to the integral with both

endpoints at infinity as we do here, as does de Hoop on occasion.

We have found that allowing T to have equal status with p as a complex variable

and considering both these complex planes, as Cagniard did [and also Dix (1954)

and Garvin (1956), following Cagniard], is an important analytic tool. Thus, we take

full advantage of the standard p-domain analysis in locating the singularities of the

integrand in (0.1), but we carry out the deformation of contour in the r-domain,

where it amounts to "closing down" the contour of integration around the real axis

while taking due account of singularities off this axis. This is often far easier than

finding the curves where only Re w varies, or equivalently, the curvet where Im w is

2



Bleistein and Cohen Caqniard Method, Complex Time

constant. This deformation of contour is further facilitated by having both endpoints

at infinity, rather than having one (unphysical) endpoint at the origin in p.

In this approach the saddle points of the exponent in the original integral play

a crucial role because they are always branch points of the integrand f(p('r))dp/dr,

in the T-domain integral. On the other hand, we will show that the images of the

branch points at ±pj in equation (0.2) are points of analyticity of dp/dr in the r-

domain. Furthermore, branch points of the amplitude f(p) of the same order as

in the exponent at any p3 are regular points of the amplitude in (0.3) in the T-

domain. Other singularities of f(p(T)) will provide corresponding singularities in the

r-doinain. Thus, it is the saddle points and these other singularities that provide

the important structure of the integrand in the T-domain. The exact evaluation of

the integral involves residues from the poles enclosed in the deformation process plus

loop integrals around each of the branch points in the r-domain that are encountered

in the deformation process. It is the latter type of integral that, leads to integrals of

the form (0.3): the inverse transform of residues at the poles is more straightforward.

The deformation of contour requires the estimate of the integral on a circular arc

"'at infinity." The estimate that this integral approaches zero with increasing radius

follows from Jordan's lemma.

A particular saddle point, ps, located on the Rep-axis plays an especially impor-

tant role. Indeed, the essence of our point of view can be explained in the context

of this special saddle point with the aid of Figures 0.1 and 0.2. In the former, the

contour S is madei up of two steepest ascent 1 paths from the saddle point p, when

r 5 0. We also show the contour F. We will refer to the region between F and S as

the primary p-dornain. It will be shown that the image F' of F is the hyperbolic-like

curve of Figure 0.2 and the image S' of the contour S is a semi-infinite segment of

'Paths of steepest ascent and descent are paths along which Reiw changes maximally; they are
also paths on which in i, is constant.
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FIG. 0.1. Path F and steepest descent path for an example with J = 2, h, = h2 = 1.2,

r = 2.5, 1/p, = 3, I/P2 = 4.
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FIG. 0.2. Image contours for example of previous figure.
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the real axis, doubly covered, starting from T, the image of the saddle point p,. This

implies that the two steepest ascent paths which comprise S are each at least a tail

of a Cagniard path. For r 54 0, 7., is to the right of the point where IF' crosses the

Re T axis. The lower part of S maps onto the real axis, "below" a branch cat from r

to oc with arg(T - T) = 7r here; the upper part of S maps onto the real axis, "above"

a branch cut from -r to oo with arg(-T - -) = -7r here. The image of the primary

p-domain is the region between r' and S' in the r domain. We will call this region

the primary r-domain. We remark that in this region I arg(r, - r)l < 7r.

Finding the p-path along which w(r, z, p) is real and approaches +oc, is equivalent

to closing the contour F down around the real axis in the r-domain. If there are no

complex singularities of the integrand, f(p(T))dp/dr, in the primary r--domain then

we replace F' by S'. The integrals above and below the cut are two integrals of the

tvpe (0.3), with two different branches of the function p(T) taken in each integral.

Typically this amounts to taking one or the other sign of a square root. In this

case, the two steepest ascent paths comprising S are the Cagniard paths for two

semi-infinite integrals whose form in the r-domain is exactly (0.3). From the method

used to arrive at the deformed paths as segments of S', it is clear how to deal with

the singularities on the real T axis: the contour of integration passes above such a

singularity on the upper part of the path S' and passes below such a singularity on

the lower part of the path S'.

If there are singularities in the primary r--domain, then one must take account

of them in carrying out the deformation of contour. However, singularities in the

primary -domain are the images of singularities in the primary p-domain. Thus,

we can find these singularities in the p-plane, which is often easier. Furthermore,

we can be sure that singularities to the left of the primary p-domain are also to

the left of the primary -T-domain and have no effect on the contour deformation
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process. Somewhat similarly, singularities to the right of the primary p-domain are

also outside the primary T-domaiii. They lie in the region where I arg(-r - T)I > 7r,

usually described as being on a "second Riemann sheet" of the T-domain. While they

do not obstruct the leformation of contour from F to S', they can be close enough

to S' that their "influence" is felt in the integration along S'. Examples of this type

are discussed in the above cited literature.

We have twice included the caveat r 5$ 0. The case r = 0 is degenerate; F = S and

the primary p-domain collapses to the imaginary axis with its image being the right

half Re 7 axis, starting from T, = -(p = 0), doubly covered just as in Figure 0.2. Here,

there is no chance for other singularities to be "caught" between the two contours

and the entire field arises as the body wave contribution due to the saddle point.

(Note that this is the case of a vertical-possible multiply reflected-ray trajectory.)

As above, however, singularities to the right of F = S may yet appear close enough

to S' to influence the value of the integral over S'.

In summary, our approach may be viewed as an attempt to replace the contour

F' by the contour S'. When there are no singularities in the primary r-domain-

equivalently, no singularities in the primary p-domain-the replacement is justified by

Cauchy's theorem; when there are singularities in the primary r-domain, we must

account for these singularities in the contour deformation and S' is only the tail of

(one of the) loop contours in the r-domain.

This approach to the Cagniard-de Hoop method is reminiscent of van der Waer-

den's (1951) approach to the method of steepest descents, which starts exactly the

saie way. Indeed, after the deformation of contour in the r-domain, the user has the

choice of (i) aplying asymptotic analysis to the resulting "loop" integral(s) [Vat-

S,,,8s lemmal (Bleistein, 1984) or (ii) continuing to obtain the exact, although usually

implicit, time domain solution by eomnleting the Cagniard-de Hoop analysis. In
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the former case, one obtains the large s expansion, from which a progressing wave

expansion in the time domain can be derived.

In some sense, we have come full circle back to Cagniard's (1939, 1962) approach,

using two complex planes. In that work the author described the mapping from p

to r in much more detail than we think is necessary. Indeed, de Hoop (1958) points

out that one of his motivations for his modification of the Cagniard method was the

difficulties of coping with the complex mapping. Furthermore, the important role

that we see for the path of steepest ascent was not a part of that original method.

W\e believe that our "equal status" point of view extracts the best of both methods.

In the next section, we discuss the transformation from Fourier transforms in

traditional wave number k (one transverse dimension) or wave vector k and frequency

, to slowness p or slowness vector p and Laplace transform vaiable s. \Ve do this for

two reasons. First, for some users deriving a solution representation in the former pair

of variables is more natural. Second, in the former variables we can treat a traditional

...........~o~. ho ,,,,,lc.,,fd probc_,n vith acute i,,agIc of incidence of the

plane wave-that is not amenable to analysis in the Laplace domain. In the third

section, we discuss the transformation from p to r with emphasis on features that we

believe are important to our approach to uhe niethod. Final'y, we app, ca: ar'proach

to some standard examples of the Cagniard method and then to the nonstandard

Sommerfeld example.

TRANSFORMATION OF FOURIER INTEGRALS

In our analysis of waves in layered media we start from a Fourier transform in time,

rather than from the Laplace transform typical of the literature of the Cagniard-de

Hoop method. We think this is a usefuil choice because Fourier representations for

solutions of wave propagation problems nre f r f-'-re common than Lapla-- cpresen-
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tations in the modern literalure with the Cagnaird-de Hoop metho(l being almost the

sole exception to this trend.

For "causal )robenls, the Fourier representation, just as the Laplace representa-

tion, is a transform on a semi-infinite domain from some finite time to infinity. Most

problems of interest start from some finite time. Indeed, even soie problems de-

scribed in terms of a plane wave incident from infinity can be reformulated as causal

problems. We will discuss this point further below in connection with the Sommerfeld

half-plane problem. Thus, for a function V"(x, z, t), we define in the causal case

v(x,z,L) j V(x,z,t)exp{icat} dt. (0.4)

It follows that the temporal Fourier transform is an analytic function of W in some

upper half w-plane, usually not including the real axis where singularities of the

transform rcside. Of course, this upper half-plane is exactly the right half-plane of

analvticitv o Ll,,: Laplace trinsform. The value of the solution representations for

real values of w are ohnij 2,1 1- analytic continuation from this upper half-plane.

In fact, we can and -,; il c -aidor only the upper right half-plane Rec > 0, and

determine the solution elsewhere by analytic continuation. With this convention, the

specific branches of multi-valued functions of L, and the spatial transform variable(s)

are uniquely defined, as is the avoidance of these singularities on the contour(s) of

integration of the inverse transform.

In most cases of interest in wave propagation problems, the lower boundary of the

half-plane of analyticity is the Re Lo axis. We assume that is the case here, although

it is not crucial to the analysis below. However, it does allow us to define the quarter

plane of our attention by the condition

-- .I exf,Y 0<a argw < 7r/2. (0.5)
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For problems in two spatial diennsions, the Fourier (k,,,) representation to be

studied takes tle form

'(x...-.') = J 'j(k,w)exp{iz(kw,,-)} dk.

(0.6)
J

)3=I

The function YJ is assmned to have the structure

.q(k,) = (g(k/w', 1). (0.7)

This is the form of .q for a )oint source: for more complex sources, the solution is

ohbtained bY convl ilion with the solutions of the type presented here.

With o1r assiIupt ion tHhat Imi > 0. there are no singularities of ; (or g) on the

e k-axis, the path of integration in (0.6). In particular, the branch points at u;

li. iII the first (uadrant (or positive imaginary axis) of the k-plane, and the branch

points at -. '/cj lie in the third quadrant (or negative imaginary axis), because we

have fixed Re, > 0.

Let us ilt rodice the change of variable of integration

k =p, (0.8)

and consider the image of the integration contour in the p-plane and the location of

sing Ilarities of t le integraid there, as well.

First. note ti at for k real and arg = o (0.5), on the path of integration

arg ) -o. (0.9)

This nueans that as argo' increases from zero to 7,/2 the contours of integration are

a family of straigl it lines through the origin, passing from the first quadrant to the

thiuld.
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To achieve the form (0. 1), it is niecessary to pick oi =z/2. WVhile in principle one

coli(Idt at empit aIII analog to thle Cagiiiardl-de Hoop t heory withI other choices of o,

tis choice is op t id ia as wve will show lat er. In this case, the contour of integration is

lhe iliia'uIiarv axils startic at +I ._X andc enin~iig at -1 . C. Later, we wvill reverse this

dlirect ion by I1ililtijplving the lilt egrial( by -1.

13eforl, prooediii g any fuirther with tlins line of anialysis, let us examine the singu-

larit ies of thle i nt egrand(. In p~art icular, note from (0.6) that

k,&. x. +z hj, 1C3) 1)21 (0.10)

Thuis. thiw integrand in v) has b~rancli points at ±1 /cj, j = 1,.I . and, as o increases

froiii zero to -/2, the contour simply rotates away from these branch points.

Oil the other haind, suppose that q(k, Lw) had singularities in the secono or fourth

qii"acrait. Thenl we wvould have to take account of the effect of passing the contour

of ihitegrat ioi ie g these singtilarit ies. For poles, that would simply amount to

inicluinhg a resIiue ais p~art of the t raiisformation process: for branch points, a ioop

integral enclosing the branch point would have to be included in the analysis. Such

i~ularit ies arise only in nonicauisal problems-an example of this type is included in

a later sect iOn

Chloosinig o = 7/2 amounts to evaluating the Fourier transform for a purely

hitiagiliary value of thle transform variable w. Alternatively, we can set

=Is (0.11)

with s real and~ positive when o = 'irg , 7r2

Whiat we have julst donle is change a Fourier transform iiito a Laplace t ranisform.

h mvever. we ha;ve (loneI( it, with eiioigh care to alert the reader to the possibility

)f (ont riblit ions" fro i si rigi larit ies of the integrand of a type we will see below in

10
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a noucausal example. We note that converting the forwarI Fourier transform to a

forward Laplace transform implies that the inverse transform now takes the form of

the usual inverse Laplace transform.

\Ve pruceed below with our analysis for s real and positive. All results can be

extended to complex s by analytic continuation techniques; however, this is not nec-

essary for the Cagniard-de Hoop method since the explicit inversion integration is not

performed.

\Ve have one other small trick to offer. We use the transformation (0.8) for x

positive and we use k = -w'p for x negative. That is, we use k = wpsgn(x). This

reverse,, the orientation of the contour, but introduces a compensating minus sign in

dk/dp. These are nullifying effects.

Furthermore, functions of k2, such as the square roots appearing in O are unaf-

fected by this trick, while the expression kx is transformed into wplxl. This will prove

useful below. The amplitude g need not be a function of k2 and some care is required

in dealing with this function.

In summary, taking account of this additional trick and the contour rotation, as

well as the change of variables from w to s, we set

k = ispsgn(x). (0.12)

For this function du,/dp > 0 at p = 0 for x nonzero. Since it is our intention to

mae 7 = w the new variable of integration, this will insure that the image £ of the

Bep axis, the contour of integration in (0.1), has an orientation that is independent

of sgn(r). This was the motivation for using a change of variables that depends on

sgn(a').

11
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Under this combined change of variables and rotation F, the contour of integration

in (0.1) is the imaginary axis oriented from -ico to zoo and

f(p) = -g(psgn(x), 1) = -(is)- g(ispsgn(x), is),

(0.13)

u(r, z, s) = v(x, z, is)(is) n - .

Here we have allowed for u to be the true transformed field within a power of is. In

general, we neglect multiplication by powers of s here, since they can be dealt with

back in the space/time domain. Integer powers of s are equivalent to differentiation

or integration in the time domain; noninteger powers of s correspond to fractional

derivatives or integrals in the time domain, which are equivalent to convolution with

fractional powers of t. The extra minus sign in the transformation from g to f arises

from the fact that the image of the integration path in (0.6) is the imaginary axis

oriented downward, whereas F in (0.1) is oriented upward. Had we not assumed the

form of g in (0.7), then we would not have ended up with f being a function of p

alone in this equation. Authors starting from Laplace transforms assume this form

of f to begin their analysis.

For three-dimensional problems, we start from a representation of the form

V(x,y,z,wU) = g(ki,k 2,)exp{ip(kl,k 2,w,x,y,z)}dkidk 2,

(0.14)
J

(k, k2,W,X,Y,Z) = kx+ k2Y + hj(W/c) 2 - k2- k2
j=l

Again, we assume that g has the special form

y(k , k2.w) = (w)" g(k1 w, k2/W, 1). (0.15)

To transform this integral, we first introduce the polar coordinates (r, €),

x = rcos, y = rsin. (0.16)

12
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Next, we apply the de Hoop transformation (de Hoop, 1960) in the k-domain,

k, = K{ COS I - K2 sin 0,

(0.17)

k2 = , sine + c2 cosO;

and we note that

klx + k2y = Klr. (0.18)

In these new variables, (0.14) becomes

v(x, y, z, ) = j (/j, K2 , w) exp{i;(K1 , K2, W, X, y, Z)} dt;, dK2,

J

(KKL,,Yy,)= r+ (/c)) -K-h, (0.19)
j=l

(KI,,2,W) = g(ki,k 2 ,W).

The function retains the property (0.15). We proceed with the same scaling as

above, except that now we must scale both K, and K2 . The rotation in w rotates

both transformed integrals. The same caveats above must be observed here regarding

passing through singularities.

In summary,

K1 = isp, K 2 = sq, w = is, (0.20)

leads to the representation of the form of (0.1), except that now both f and w depend

on q:

f (p) - - (p, -iq, 1) = -(is)-"4(isp, sq, is),

(0.21)

u(r, z, s) = (is) - -V(x, y, yz, is).

13
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For the purposes of the Cagniard-de Hoop method, we treat q as a parameter whose

presence need not be specifically noted in the arguments of these functions. However,

it should be noted that q changes the meaning of the slowness value 1/pj, in that

pi = 1/cJ, two dimensions,

(0.22)

p3 = 1/c + q2, three dimensions.

Furthermore, after applying the Cagniard method to determine U(r, z, t), it is neces-

sary to integrate the result with respect to q over (-oo, oc).

In summary, we have shown how Fourier representations of both two- and three-

dimensional wavefields in stratified media can be reduced to the same integral form,

Equation (0.1).

ANALYSIS OF THE EXPONENT

Here we consider the complex change of variables

J
r=w(p, r, z) = pr + p h - p2 , (0.23)

j=1

from p to -. Under this change of variables, the integral in (0.1) becomes

u (X, z, s) f f(p(T)) Lee d-. (0.24)

We need to know the image Fr' in the r-plane of the contour of integration in (0.1).

That original contour F is just the imaginary axis. Because we want to deform this

image contour onto the Re 7 axis, we also need to understand the conformal mapping

of the image region between F' and the Re r axis. In this manner, we will identify

those singularities that must be crossed in deforming one contour into the other.

14
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The Image of F

We consider now the image of the contour F under the mapping (0.23). For this

image, let us set

p =I i, -o < o < o. (0.25)

With this choice, J

Rer= - hj p+ a 2, Imr=Or, (0 ?r)
j=l

so that Re - is even and Im T is odd on the image contour F. Note also that

dTJ (0.27)-- =r p2
dp j=1

In particular,

- = r > 0. (0.28)

From this it follows that argdT = 7r/2, because argdp = 7r/2 at p = 0. Thus, the

contour is directed vertically upward at the image point

J

7(0) = Zhjpj, (0.29)
j=1

which is the travel time along a vertical raypath from the source depth to the obser-

vation depth. That path includes all multiple reflections at interfaces that are implied

by the terms of the sum in w(p, r, z).

In general, on this image path

J

Re - -* Ial 1 hj, Im 7 - ar, I1 -4 o, (0.30)
j=1

and

R e 7- - sg_( ) - - - 1 - c 0 . (0 .3 1)

That is, the image contour has an asymptote in the 7-plane with slope proportional

to the ratio of the horizontal travel distance to the vertical offset. In the simplest
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case, J = 1, this curve is one branch of a hyperbola. For larger values of J, the basic

hyperbola-like nature of a symmetric curve with symmetric asymptotes still holds.

Figure 0.2 is an example of an image contour F' for a case in which J = 2 and the two

propagation speeds are 3km/sec and 4km/s with h, = h2 = 1.2km and r = 2.5km.

Because the classic Cagniard integration path in the complex p-plane is also

hyperbolic-like, the reader is cautioned not to confuse it with the previously dis-

cussed image contour F' of the imaginary p-axis. This path is in the r-domain; the

Cagniard path is in the p-domain.

The Saddle Points of w

Saddle points are defined as those points at which dw/dp = dr/dp = 0. From

(0.27), one can verify that there is always a point on the Rep axis where this is true.

In that equation, one can see that

dT- -* -co, as p -* min(pj). (0.32)
dp a

Because dr/dp is positive at p = 0, from (0.28), dr/dp must pass through zero

somewhere on this interval. This is the saddle points to be denoted by p3 . At this

point,
J

r=Zhj P (0.33)
j=1 J? - p 2

This equation defines the geometrical optics ray that connects the origin with the

point (x, z) including multiple reflections and refractions satisfying Snell's law. To

see this latter point, observe that Snell's law for reflection and refraction guarantees

that

p8 = pj sin Oj, j = 1, J, (0.34)

is the same for each j (even for mode converted waves). Equation (0.32) assures that

p., < mini(pj); and thus, that each Oj is real. The horizontal travel in the jth layer is

16
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given by hi tan Oi; thus, the total horizontal travel is

J

7" = hj tan 0j. (0.35)
j=l

If we use (0.34) to define tanOj in terms of p, and pj, the result is (0.33).

The saddle point p, is a significant point for our analysis. At this point, the

mapping from p to r ceases to be conformal; that is, the angle between two intersecting

arcs in the p-domain will not be preserved in the T-domain. To determine how this

angle is changed, it is necessary to find the first nonvanishing derivative at p,. To

this end, we differentiate (0.27) to obtain

7hjp; (0.36)

dP 2 
- l ( 2] 23/2

The explicit formula shows that d2r/dp2 is negative on the interval from 0 to mini(pj).

This establishes that p = p, is the only saddle point on this interval and that the

second derivative is negative at this saddle point. Let us set

TF(p8 )= rs. (0.37)

Because d2 -/dp2 is nonzero,

- 1 d2 r(p ) ( P1- , 2, -1 - (p _ p )2 (0 ,3 F)
2 dp2

from which it follows that changes in argument of p - p, are doubled in the r-domain.

Of particular interest to us are the paths through p, on which hn w = constant.

In oii, case, that constant is zero, since w(p,) is real. Of necessity, the image of these

paths must be a segment of the Re - axis, and these paths Im w = 0 through the

saddle point are segments of the Cagniard path.

In the method of steepest descents, these paths of constant hi w are called paths

of steepest ascent or descent. The reason is that when we think in terms of the surface

17
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Re w, these are the paths of maximal change in Re w away from the reference point, or

literally the direction- of steepest ascent and descent on this surface. In the method

of steepest descents, the paths of steepest descent are the paths of interest (since the

exponent of interest is -sw): here. the paths of choice are the path.s of steepest ascent

(since the exponent of interest is -sw) because in either case we are interested in the

paths on which the integrand decays exponentially to zero at a maximal rate. We

will denote by S the contour made up of the two paths of steepest ascent through p,

oriented in the direction of ascent in the upper half-plane. Figure 0.2 shows S' for

the same example considered in Figure 0.1. Note that Figure 0.2 shows a contour

in the r-domain, while Figure 0.1 shows a contour in the p-domain. The contour

F' in Figure 0.2 is the image of the Imp axis. As noted above, the image S' of the

contour S in Figure 0.1 is the doubly covered ReT axis, starting at 7, and extending

to infinity. This will be verified below. When viewed as a conformal mapping, the

image of the region between the F and S in the p-domain (Figure 0.1) is the region

between F' and S' in the r-domain (Figure 0.2). As noted in the introduction, we

refer to this former region of the p-plane as the primary p-domain and we refer to its

image in the r-domain as the primary r-domain.

On S, Im w = 0, as required; however, there are two curves through p, with this

property and they are orthogonal to one another. How can we see that the image of

the contour indicated here is S', as claimed? Note first, from (0.36) and (0.38) that

T - 7 - A(p, - p)2  (0.39)

with A > 0. Here, reversing the order of 7's on the left side of the equation has

allowed us to express the approximation (0.38) in terms of a positive constant, A.

Reversing the order of the p's on the right side of the equation allows us to express

the right side in terms of an expression for which we know the argument at p = 0 and

then, by continuity allows us to know the argument everywhere. In particular, one

18
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can verify that when p moves from the origin to a point on S above p, and nearby,

arg(p, - p) ;- -,r/2 and arg(r, - -r) -r. Similarly, when p moves from the origin to

a point on S below p, and nearby, arg(p, -p) - +7r/2 and arg(,r - r) +-7r. In either

case, -; - - is negative as required. One can further verify that on the alternative

paths of constant In w, Re w decreases. That is, the image of these paths is the Re T

axis to the left of -r.

Of special interest is the Rep axis to the right of p,. Here we must have arg(p, -

p) = ±7r, depending upon whether this region was reached by p passing above (-)

or below (+) p, when starting from p = 0. It follows from (0.39) that for these cases

arg(-, - r) = ±27r, which are choices of the argument outside of the primary r-

domain. These values of 7 correspond to points on the second Riemann sheet of the

mapping from p to T and values, 7 < T,.

It will prove useful to evaluate -r. To this end, we use (0.33) in (0.23) to find

J 2
Ts~P -- j P

=l~ j2" - + h, 2 p- p 2- s

(0.40)
J 2

Vpj 2 2

Let us define

2 'Pjs j (0.41)

That is, rj is the segment of the offset r at p = p, in the j-th layer and pj is the

length of the ray segment in the j-th layer. Substitution of the definition of rj into

the definition of pj yields
P J / 2' (0.42)

p3t~ - p,,
and

= pjpj (0.43)
j=I
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is The total traveltime along the ray. When we compare this result with (0.29), we

see that

r- _> r(0), (0.44)

with equality holding only for r = 0. Indeed, from (0.36), -r is the maximum of r for

0 < p < minj(pj) and this inequality holds for r(0), replaced by r(p) for any p in this

interval.

The point -r is a branch point of the integrand in (0.3). To see why this is so, let

us solve (0.38) for p:

Pps I 2(T--r) (0.45)
- 2 Tr/dp2

Differentiation of this equation yields

dp 1
2(T /(0.46)d-r \/2(7- -T)d2 T ldp2'

which verifies the claim.

Ve can draw an important conclusion from this observation. The image in the

T-domain of the steepest descent path in the p-domain is a segment of the Re T axis

that lies to the right of the image of the imaginary axis as shown in Figure 0.2.

In the T-domain, we are most concerned with the region in which 0 < arg(r--rs) <

27 that lies in the primary r-domain. To see this, note from (0.36) that d2-/dp2 < 0

and, of necessity, argp - p8 = 7r/2, 37/2, for - - r, to be positive. When we take

arg F/dp2 = -7, we find that these two directions correspond to arg- r- = 0, 27',

respectively. Then, in this neighborhood, values of argp - p, less than 7/2 or greater

than 37/2 must correspond to images points with arg T - 7- less than zero or greater

than 27, respectively. These regions correspond to another Riemann sheet of the

multi-sheeted surface of the T-domain.

Of particular importance, singular points of f(p) in the primary p-domain map

into points in the primary r-domain. As previously noted, not all of these need to
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be singular points of the integrand f(T)dp/dr in (0.3). For those that are singular

points after transformation, deformation of the contour F' onto the Re - axis cannot

proceed without including loop contours around these points. On the other hand,

singularities to the right of the path of steepest descent in the p-domain and out of

the primary p-domain, must of necessity map onto these other sheets of the Riemann

surface.

The Branch Points of w

We turn now to consideration of the points pj which are the branch points of w(p)

in (0.2). In the neighborhood of pj,

- 7(pj hj V2pj jp- p + O(p, - p), (0.47)

from which it follows that

(T- T(pj ))'
pj - p -2pjh 2  + O((T- - 7-(pj)) 3 ). (0.48)

From the first equation here, we conclude that p-p is linear in r - T(pj). Thus,

if this square root appears in f(p), it is not a branch point of f(p(r)). From the

second equation here, we conclude that dp/dr is also linear in T - T(pj). Thus, the

branch points of w(p) are not a priori branch points of the transformed integrand

f(p(r))dp/dT of (0.3).

On the other hand. other singular points of f(p) must of necessity be singularities

of corresponding type-branch point, pole, etc.-of f(p(T)), because d-r/dp is finite

and nonzero at such points.

The Choice o = r/2.

We close this section by returning to the question of the choice of final argument

-./2 for w. For any other choice, the path F would not be vertical. Then, for r near
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enough to zero, F would intersect S, in which case the image domain in r becomes

much more complicated. In particular, the image path F' would cut through the

image path S' and part of the primary r-domain would be on the second Riemann

sheet.

On the other hand, it has been shown that knowing che Laplace transform for

real values of s suffices for the determination of its inverse function (technically, up

to a function of measure zero, but uniquely at points where the inverse transform

is at least left- or right-continuous). This follows from the observation that the

Laplace transform must be analytic in some right-half s-plane and Lerch's theorem

[Sneddon, 1972, Widder, 1959], which assures uniqueness of the Laplace inversion of

such functions. Then, one need only observe that an analytic function is determined

in its domain of analyticity by its values on a line segment in that domain, no matter

how small. Any segnent of the Re s axis will do. It is standard in tile literature

to simply state that knowledge of the Laplace transform on the real axis suffices to

determine the inverse function (in the time domain) uniquely.

EXAMPLES

Here we will demonstrate the application of the Cagniard-de Hoop method on var-

ious examples designed to demonstrate the analysis above and bring out the features

of this interplay of two coinplex planes. The reader should note that the image of

the stec)est ascent path in the p-domain is always at least a part of the loop integral

path around the real axis in the T-domain and, sometimes, may be all of it. Whether

or not it is all of that path depends on whether or not there are other singularities of

f (p) in the primary p-d(omain other than branch points of order one-half at the same

locations at the branch points of the exponent w(p, r, z).
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Two-dimensional free space Green's function

In this first example, the only singularity of the integrand in the r-domain will be

the branch point at 7,. We will verify further that the integrand is analytic at the

image of the (single) branch point of w(r, z,p).

We consider

,xp i[k + N 2 /cf - k-'21-1] (0.49)
4 i 2 ) 2/../ 2 ,2

This is an integral representation of the two-dimensional Green's function for the

thellnholtz eqlati<tt for acoustic waves in a constant density medium,

,2

V,2 , + - -(.)b(). (0.30)

Ih'i , V is the' twO lilensiona! Laplacian. See Bleistein (1984), for example.

lhis representation is a special case of (0.6) and the transformation of the solution

proceds as il the discussion below (6) to yield (0.1) with w defined by (0.2) and

.1 1. That is.

?/(.r, ,jS) A exp{-sw(p. IrI, -)} (0.51)

with 11, given b'

,'p.,.r = = pI:,t + -p 2 lzJ, P, = /c. (0.52)

In this cxatilple. the only critical points of the integrand are the branch points at

±11 and the saddl' point deterined by (0.33) with r = jxr:

i,, = pilisiii9. .X = psi., z = pcoCSt, p = x + s. (0.53)

We ln ( I n inldex n i here because there is only one value, pl.

The t ransformation (0.23) in this case is

r = ,,'(p. J., ) = p. x + Vj -p 21z- (0.54)
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and (0.24) b~ecomles

4-.1 F, dr d 2

with 17' as showni ini Figure 0.2 except that the specific numbers of that example are

not relevant here. The theory assures us that the integrand has no singullarities except

for thle branch po1 it at

T, =::: pip, (0.56)

mid~ that there arc 110 other singularities of the integrancl in (0.24). We will explicitly

%verify that belowv.

I'c can 110W\ close the contour of integration F' around the branch point at ,

to ob~tain a loop iiitegral onl the contour S' as shown in Figure 0.1. WVe denote thle

soluitionl 1)(7) for T Onl the upper sidle of the loop by p+ and the Solution P(7) for rT on

lie lower side of the 1001) by p- Then we can write

u~xz~) f i~ 1 - p 21exp{-S T Id-. (0.3f)
~~ AT p(T2~2 d

Nowv thle t inie-(loinain solution can be read off as the integrand here. However, there

v, onec fii't her simiplificat ion that conmes from the fact that tile two terms in the

iiitegraid are Complex conju"Igates of each other. This fact observation follows from

lie Schwa)(7z2 r(JI(CtiOi. prinuiple [Levinson and Redhieffer, 1970], which assures us that

an1 allalvtic filictionl mlust, assumne complex conjugate values across a line in its domain

of nltiivoii which the function is real. Here the line along which the function

1)( -,) is real, is the line pi zIl < T < T, =pip, which is the image of 0 < p < p, where

wve kniow that ir is rea l. Thlus, comlex conjugate points in either domain correspond

to compilex coifl iga t e poliilts ini thle other and we conclude that

U(r.s.t =lii1 -- H(t -r) (0.58)
(I 7r +~p~
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In this equation, H(t) is the Heaviside function, equal to unity for positive argument

and zero for negative argument.

For this particular case, we can explicitly solve for p(T) because (0.54) is equivalent

to a quadratic equation. The solution is

p =[ I.,. - 7P~p2 _-Tr2] /p 2. (0.59)

In this solution, it was necessary to make a choice of sign of the square root. We

chose the sign for which

p=0 r-pIzI,

which is consistent with (0.54). The other choice of sign of the square root corresponds

to the mapping of p to the second Riemann sheet of the r-domain. We see here that

the only singularities of this function are at 7 = ±pip = ±7. One of these is as

predicted by the theory and the other is completely outside the domain of interest,

since it is not in the primary r-domain.

One can further confirm that

P2 2 = [IzIr + lXi Fp Jp - 2] /p2, (0.60)

which also is singular only at ±r, and not at 7(pi) = pjjxj. This is as predicted by

the theory.

Finally,

dp -_ 1+ - (0.61)
dT p2 2/p' 2_ -T 2

Since the Heaviside function in (0.58) confines the nonzero portion of the solution

to t > . = pip, and since we wrote this result in terms of p+, we must determine

what happens to the square root in (0.59) when we pass over the branch point at

pip in the 7-domain. What is crucial here is that arg(plp - 7) varies from 0 to -T,
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on this trajectory. We conclude then that the square root must have an argument of

-77/2 (essentially, a multiplier of -i on a real positive square root). That is,

=+-Z [lXIi- + Ilz -IZ~2 _ IPp2] /p 2 , - > PIP. (0.62)

However, we need not deal separately with the derivative and f(p+(i-)) because it

follows from (0.60) and (0.61) that

dp+ 1 i

d, i 2 p p T> PIP. (0.63)

'ow we can evaluate (0.58) explicitly to obtain

U(x, z, t) = H(t - pecl) (0.64)

Here we return to the use of the propagation speed ci, rather than the slowness Pl

This is the two-dimensional free space Green's function for the wave equation (0.50).

Point Source over a Half Space

As a second example we consider

v(x, z,W) = 1 -J dk R(k/w)exp{i[kx + w2/cf - k2(2h - z)]
4i _/ -A

(0.65)

with
V11 C -21W2<,, - 1c -21W2

R(k/w) -k
2  

- C2 - k (0.66)
/C2- k21W2 + 1/Ic2 -22

This is the upward scattered acoustic wave in a constant density medium for a point

source at height It, over a half space. See Bleistein (1984), for example. This solution,

when added to the previous one, provides the total response above the interface

between two homogeneous half spaces with different acoustic speeds.

This solution again fits the form of (0.6) and the transformation of the solution

proceeds aLs ill the discussion below that equation to yield (0.1) with w defined by
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(0.2) and J = 1. That is,

u(xz,s) + j dp R(p)exp-sw(p'lxl'Z)}' (0.67)=47r 1, Tl_

with

w(p, lxi,z) = pixi + Vp-: p 2(2h - z),

R(p) p P P 2 (0.68)
2 72 + 2 2

P, = 1/C1 , P2 = 1/C2.

The new feature of this example is that f(p) now has a branch point at P2, which

is not a branch point of the exponent w. As in the previous example, the branch

point at P, appears to the same order in f(p) and w(p, lxi, z).

Note that, except for replacing Izi by 2h - z, the analysis of the transformation

from p to T is exactly as in the previous example. In particular, the saddle point

determined by (0.33) with r = lxi becomes

Ps = pl sin 01, x =psinO, 2h - z =pcosO, p= 2+(2h -z) 2. (0.69)

The region in which 2h - z > 0 corresponds to 101 < 7r/2.

The transformed integral (0.24) for this case is

?I (x, z's) = 4I f,_dr R(p(r) 1dr exp{-sr}, (0.70)
dr7r (0.70)p 2d7

with F' as shown in Figure 0.2, except that again, the specific numbers of the figure

are not relevant here.

We must be concerned with the location of the branch point P2 and its image

iII the r-dornaiii. IlI particular, we must know when the image falls in the primary

-r-domain. If P2 > t), this cannot happen, since p, < pl = min(p,p2); see preceding
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C

FIG. 0.3. Physical domain showing pre- and post-critical regions defined in terms of

0.

discussion on the location of the saddle point. Therefore, the interesting case occurs

when

P2 < P1 or cl < c2. (0.71)

Of course, the reader familiar with this problem will observe that this is, indeed, the

case in which head waves arise and that they manifest themselves in the solution

through the effect of this second branch point. We proceed with this more interesting

case.

We introduce the critical angle, 0, by the equation

P2 = Pi sin 0, (0.72)

and note that P2 will be in the primary p-domain if

sino, < I sin 01. (0.73)

From Figure 0.3, we can see that this is the post-critical reflection region in which

the incident wave is totally reflected. Therefore, for this physical region we now know
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FIG. 0.4. Deformed path of integration in the r-domain for P2 in the primary p-

domain.

that the image point 7,, given by

= w(p 2) = ppi{sinOjsinOI +cosOccos0}

(0.74)

= ppi cos{0 - 10} = (p/ci)cos{O - 101,

lies in the primary r-domain. Thus, the deformation of F' in this case, must be a

loop integral around r, as shown in Figure 0.4.

To see the advantage of using two complex planes in the Cagniard-de Hoop

method, we note, as in the preceding example, that

T, = w(p,, lx , z) = p/c1 > 7: = (p/ci){cosO - 10l1 = -r,, (0.75)

and this identity holds no matter whether P2 is in the primary p-domain or not.

Again, note that -, is the maximum of r for 0 < p < pl. Therefore, by just knowing

the value of r, we cannot tell whether or not it lies between F' and S'. It is only when

we see that it is the image of a point in the primary p-domain that we can be sure

that it lies between these image contours. When P2 is to the right of S, we know that
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its image in the --domain lies on the second Riemann sheet of the branch point at

7, and not between the image contours, F' and S'. However, by understanding the

mapping from p to 7- we readily know that for P2 to the right of the primary p-domain,

its image must be on the lower Riemann sheet with respect to the branch point at r,

and at some - < T,. Thus, such a choice of P2 does not interfere with the deformation

of F' onto S'.

We now have the machinery in place to find a time domain representation of the

upward propagating wave for this problem in both the pre- and post-critical regions

in Figure 0.3. We N.ll discuss them in that order.

Case I: 101 < 0,.

From (0.69) and (0.72), it follows that in this case p, < P2 and the latter point is

outside the primary p-domain. Therefore, its image is outside the primary r-domain

and the deformation from F' to S' proceeds unimpeded by the presence of the image

Tc of p2. In analogy with the transformation from (0.51) to (0.57), in this case (0.67)

becomes

1 ° [dp+ R(p+) dp. .. .R(p_)
tLXZS)=4I d-- i exp{-si-}dr (0.76)U(XZ'S) ZiJ. d- p: 2 d p

and

U(x,z,t) = hn I dp+ R(p+) - H(t - Ts). (0.77)
d- 27r p2  p2

For this case, (0.63) is still valid, c),cept that p is now defined by (0.69). Since the

right side of this last expression is purely imaginary, we extract the imaginary part

in (0.77) by choosing the real part of R(p+); that is,

U(x, z, t) - H(t - p/cl) Re {R(p+)}. (0.78)
27r t 2 - p2/c 2

This result agrees with Aki and Richards, 1, 1980, p. 230, eq. (6.57).
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Case II 0 > 0,.

In this case, as previously noted, P2 < p, and lies in the primary p-domain, its

image r, lies in the primary '--domain and the deformed contour in the r-domain is

as shown in Figure 0.4. Consequently, we replace (0.76) by

1 r, dp R(p ) dp. R(p_)
iYj 2 = r +j dr PIp+p ]exp{-sT }dT

27 2 drT p p

(0.79)

= 'U1(x,z,s)+?t2(x,z,s),

with ul and u2 corresponding to the first and second integrals, respectively.

Let us first consider the integral ul(x,z,s) and its inverse transform Ul(x,z,t).

The fact that both limits of integration are finite tells us that the inverse transform

is a function that "turns on" at t = -r and "turns off" at t = 7,. This finite interval

of integration is the image of the line segment, P2 < P < P, in the primary p-domain.

On this interval, the change of variables defined in (0.68) is real. In analogy with

(0.60) and (0.61), we find here that

:p2  [[2h- z]r+ pp2o..T2] /P (0.80)

and

dp [2h - zir + IxlpVp2 - (d p2 p2p2 - T2  
(0.81)

with p defined by (0.69). Thus, we conclude that

Ui(x, Z t) = Im dP+ R(p+) [H(t - r,) - H(t-

dr 27irp 2-2 _ [H

(0.82)

Im {R(p+)} H(t - -)- H(t -

27r p2 / C t2
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For u2(x, z, s), the path of integration is one for which the p(r) is again complex

valued with the derivative as in the above case 0 < 0,

U2 (x,z,t) = H(t - p/cl) ae{R(p+)} (0.83)
27r t2  _- p 2

These results agree with Aki and Richards, I, p. 234, eq. (6.58).

This completes the discussion of this elementary problem. It is typical of the type

of analysis that is necessary when viewing the change of variables as a mapping from

one complex plane to another.

Three-dimensional free space Green's function

We now consider

o-dkldk2exp{i[klx +k2y + /w2/c2  k k2 - k21z]}I

v(x,y,z,w) = JL 00  2 ?s 2 i -= l c , -k , -k 2
(0.84)

This is the three-dimensional analog of (0.49) and is of the form, (0.14), with J = 1

and

1 1 1 1
g(ki, k2,- (0.85)87rivm-l k - 8i. V11c2 - kflI'2 2 ,l,-

so that in (0.15), n = -1

The transformations below (0.15) can be applied here, leading to functions f and

v defined by (0.21). That is,

1 1 1 1 (0.86)

8i2i [1/c +q 2 -p 2  87r2 i V -p 2

and

v(x,y,z,is) = su(r, z, s). (0.87)

In the first equation p, is defined by (0.22) and in the second equation, multiplication

by s means that we must differentiate with respect to t in addition to integrating
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with respect to q in order to obtain the time domain Green's function from the result

of applying the Cagniard method to the function u.

With these results we find that m,2 must analyze the integral representation

u(r,z, s) p- dp exp{-sw(p,r,z)}, (0.88)
87r21 r V- p2

with w given by

w(p,r,z) = pr + Vpf - p2Iz1, p2 =1/c2 + q2 . (0.89)

These equations are the same as (0.51) and (0.52) except for (i) replacement of x and

IxI by r and (ii) an extra factor of 1/27r in the definition of u. Thus, we read off the

result of the Cagniard method from (0.64) as

U(r,z,t) = +(t - p/c1 ) 2 = + z2 .  (0.90)41r2 t 2 
- /C2'

Here we see the power of de Hoop's transformation: except for the quadrature and

differentiation to follow, the application of the Cagniard method to the represen-

tation of the three dimensional Green's function is reduced to the analysis of the

two-dimensional I)roblem treated earlier.

As noted above, it is necessary to integrate this result with respect to q

H(t - p/Cl) ,2/22
0 U(r, z, t)dq = 42 p2 t c

(0.91)

H(t - p/c1 )

47rp

Finally, we differentiate with respect to t to obtain v

v(x,y,z,t) = 6(t - p/c1 ) (0.92)

41rp
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In Chapter 5 of Cagniard's (1939, 1962) book and in Dix (1954), polar coordinates

are used in the representation of the Green's function. This leads to a pair of integrals

in transverse wave number and angle between the transverse wave vector and (x, y).

The first of these integrals is treated by Cagniard's method. However, the function w

depends on the polar angle, making the subsequent integration (the analog of the q

integral here) much more difficult. This latter integration is a tour de force in complex

function theory by those authors. The de Hoop transformations avoid this extremely

difficult analysis, making application of his modification of Cagniard's method much

more accessible and a method of choice for a broad class of problems.

The Sommerfeld Half-Plane Problem

We will consider here diffraction of a plane wave by a half-plane in the case where

there is no equlivalent causal problem. This is not a problem which is normally treated

by the Cagniard-de Hoop method starting from the Laplace transform, because that

method requires an equivalent causal problem for the (one-sided) Laplace transform

to make sense. However, the structure of the problem certainly lends itself to treat-

ment by the Cagniard-de Hoop method, if we start from a Fourier representation of

the solution and carefully observe the interplay of singularities with the rotation of

contour associated with the transformation from (k, w) to (p, s).

The underlying problem is as follows. A plane acoustic wave in a constant density

medium is incident from infinity on a half-plane occupying the region, x > 0, z = 0.

The wave is also parallel to the y axis so that the problem is two-dimensional. Given

a boundary condition, the objective is to find the total field everywhere. We will

assume the boundary condition that the total field is zero on the scatterer.

In Figure 0.5, we show two possible directions of incident wave from above. The

waves are distinguished by the relative inclination of the incidence direction, as defined
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oc

FiG. 0.5. Plane wave incident on a half-plane; two possible cases shown, distinguished

by relative inclination to the scatterer. The angle of incidence is 7r - 0.

by the angle , - 0. For 0, > 7r/2-incidence from the left-one can easily construct

an equivalent initial value problem starting with a plane wave initiated at some finite

(negative) time. (This is equally true for a wave incident from the left and below.

This is the case extensively treated in de Hoop [1958].) For 0, < 7r/2-incidence from

the right-this is not so straightforward. For any finite negative time, the total field

would have to include a plane wave terminated on the reflector plus its companion

reflected wave, certainly more complicated than the "ideal" we propose to study. It

will be seen below how the "noncausal" nature of the problem posed here for this

latter choice of 0, manifests itself in the analysis.

In the mathematical formulation, one begins by assuming an incident wave

,I'(x, z,w) = exp{-wpi[xcosOc + zsinO,]}, pi = 1/cl, (0.93)

with incidence angle

= - 0'. (0.94)
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Note that in this problem, we take z positive upward and we take 0 to be the

polar angle measured from the positive x axis. This interchanges the role of sin 0 and

cos9 from the standard geophysical convention. However, this makes comparison

with other solutions in the literature easier, since this is Sommerfeld's notation.

The total solution is written as

VT(X, Z, w') = vi(x, z,'W) + vs(X, Z, W). (0.95)

Here the scattered field vs(x, z,w) will include the reflected field, the diffracted field

and the negative of the incident field in the geometrical shadow. With this formulation,

VS(x, z, w) is an outward propagating wave for w real. Alternatively, vs(x, z, w) must

be an attenuating wave for hmw > 0, or equivalently, Re s > 0, which is where the

type of Fourier transform we aie considering here is initially defined.

The solution to this problem by the Weiner-Hopf technique (Carrier, Krook and

Pearson, 1983) leads to the integral representation

wPI(1 - cos90) exp z [kx + FW2p - k2kz]]

VS (X [ Z w) = - 1 dk (0.96)

The contour Fk is shown in Figure 0.6 for the case Rew > 0 and cos9, > 0. This is

the case which is inherently noncausal.

Recall that part of our process of transformation from (k, w) to (p, s) involved a

rotation of w from the real axis to the imaginary axis, albeit after rescaling k. In

Figure 0.6, one can see that a rotation of w will cause the pole to rotate through the

path of integration. This is not acceptable, unless we account for the residue at the

pole. If we were to rescale k, the singularities would lie on the axis; for Im w > 0 the

image contour would pass between them from upper left to lower right, and now the

same difficulty would arise from further rotation of the contour with a fixed pole.
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0)/C 1

-wcosOc/c 1
• Fk

-0)/C 1

FIG. 0.0. The contour, Fk.

\When cosO, < 0, the pole noves to the first quadrant, Fk can be replace bv the

Rek axis, and the pole rotates away from the contour along with the branch point

in the first quadrant as arg.w increases. Equivalently, after rescaling. -k = uwp, the

contour of integration would move away from all singularities with increasing o just

as in the previous two examples. Recall that this is the case that corresponds to an

equivalent causal problem and our analysis is no more difficult than it was for the

standard prol)lems treated by the Cagniard-de Hoop method. We proceed with the

analysis of that more interesting cwie for which there is no equivalent causal problem,

that is. for cos0, > 0.

Let us replace. F in Figure 0.6 by the contour in Figure 0.7 and replace the integral

over this contour bY the sum of the residue at the pole and an integral along the real

axis. That is,

Ifs(, Z, ') = V'RES(X, z,w) + v(x, z,w),

I,,ES.i, 0.,) = - exp {iWpI [-XcoSO0 + I~Z sill 0 , (0.97)
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0.)/51

00

-0wo~/c .

- (/C 1

FIG. 0.7. Replacement contour for rk.

C o 01J XpI) { [kx + W p2 Is }dk
. "= - 2'i( - [k + wpl cos 0,] V/ 1, + k

Now we cal intro(dice the change of variables (0.20), k = ,;psgn(x), carry out

the rotation of .: to the imaginary axis, and set w = is (as previously described) to

obtain the standard form of the integral representation for u(x, z, s) = ?,(xz, is):

c(c, z, S) d exp{-SU(p, I, d . (0.98)
[t, sgn(,r) + P, cos 0] psgn(x') + p,

Again. in this venation,

,''(,, IH1,) = j.,1 + n, - pkl.I, p = 1/c,. (0.99)

and F is the contour of Figure 0.2.

This analysis could have started from an integral in which W was real, with the

contour Fk roplaced by the ccntour shown in Figure 0.8. The final result would not

change. The rotation of contour after rescaling k and rotation of w or the rotation of

&' first would produce exactly the same interplay between the contour of integration

and the pole.
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-ocosO cc w)/C

-OC

FIG. 0.8. Contour of integration for Rew.

We have now made thie main point of this example concerning the Cagniard-de

Hoop method, that the change of variables plus rotation implicit in the equation

c, = is, starting from w (nearly) real and ending with s real, may introduce special

contributions as a consequence of singularities forced to pass "through" the contour

of integration.

It is interesting to continue the analysis of the solution via the Cagniard-de Hoop

method and we proceed to do so, despite having already accomplished our main

objective with respect to this problem.

We note first that, VRES(x, z, w) in (0.97) can also be written as

-exp{iwp, [xcos(wr -O)-t-zsin(7r -- 0)]}. z > 0,

UIIEs(X, z, ) = (0.100)
-exp{iwp 1 [xcos(±r +0,)+ zsin(7r + 0,)1}, z < 0.

The first line here has the form of the reflected wave, while the second line has the

form of the negative of the incident wave. As previously noted, we are alert for such

terms to appear in the solution vs. Ti;e only problem is that these two expressions

cover the entirc upper and lower half-spaces, respectively, rather than the reflection

region (labeled I in Figure 0.9) in the former case and the geometrical shadow (labeled
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H

FIG. 0.9. Geometrical optics regions for the scattering of a plane wave by a half-plane

reflector. Region I: geometrical reflection. Region II: geometrical shadow for the

incident wave. Region III: remainder of the plane. VRES extends the reflected and

negative incidence fields, respectively, to Region III.

II in Figure 0.9) in the latter case. Thus, we must be alert to further corrections to

these plane waves in the representation of u(x, z, s) in (0.99).

" e now turn to the analysis of u(x, z, s) defined by (0.98). Because 0 is measured

from the x-axis in this example, the location of the saddle point in (0.34) is given by

ps =p Ijcosl- I cosl =Ix- , p = v' 7 + Z2. (0.101)

What is of interest to us here, is the interplay of the location of p, and the pole of

the integrand in (0.98). We note first that the pole is at some p < 0 for x > 0 and

therefore is outside of the primary p-domain. Therefore, we need only consider the

case x < 0 and the pole located at

p = -sgn(x)pl cos90 = -sgn(x)cos Ocl. (0.102)
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FIG. 0.10. The regions of incidence and reflection described in terms of angular

boundaries.

In this case, it is at least necessary for x to be negative for the pole to be in the

primary p-domain; that is,

x <0 => r/2 < 0 < 37r/2, Icos0l = -cos0. (0.103)

Furthermore, it is necessary for the pole to be to the left of the saddle point for it to

be in the primary p-domain; that is,

Pp < P, =:= cos0, < -cos0 = cos(7r - 0). (0.104)

WNihen we rewrite this result in terms of angles,

-0,<rr-0<0, =:> 7r-0,<0<rr+0,, (0.105)

we see that the pole is in the primary p-domain for (x, z) in Region III of Figure 0.9.

See Figure 0.10.

For this angular range, the image of the pole is in the primary -r-domain and

the deformation of F' is a loop integral starting at the pole just as in Figure 0.4.

For the pole in the r plane and the branch point at r, "well-separated," we can

consider the two contributions separately. It is fairly straightforward to verify that
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the residue at this pole is just the negative of the wavefields given in (0.100). That

is, the residue at this pole has the effect of eliminating the reflected wave and the

negative of the incident wave in the regions where we did not expect them to appear

in the first place; now these waves are restricted to the region of reflection and to the

geometrical shadow, respectively.

For (x, z) near the boundaries of Region III the pole and branch point are nearby

one another. If we wish to allow them to coalesce, we cannot consider the contribu-

tions separately. In the limit of coalescence of the singularities we no longer have a

simple residue plus branch cut integral and we must content ourselves with numerical

integration or a uniformly valid asymptotic approximation that allows coalescence.

Let us suppose now that the pole and the saddle point are "well-separated,"

whether or not we are in Region III. We denote by UD(X, y, s) the contribution from

the loop integral starting at the saddle point, the contour S' in Figure 0.2. This

integral is obtained in the standard way, as described for the previous two examples,

from the representation (0.98). That is,

V(1 - COS0) rexp{-sr} dp
2D(Xr1 o - d' . (0.106)
27riI(,fS is' [psgn(x) + Pi cos0'] /psgn(x) + 1), d

Since w in (0.99) is the same as (0.52), the analysis of the first example can be used

here, as well. In particular, dp/dr is given by (0.61) and r, is given by (0.56). After

some algebra, we find in analogy with (0.57) that

S V/(1 - cos 0) jo e- T

P'P r 2 -p 2

{ rlzl - ilx -p2 dr.(0.107)
[±(r)sgn~x) + Pi cosO p+(7-)sgn(X) + P
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In this equation, I)+(T) is given by (0.62). From this result, the time-domain solution

is given by

VD(XZ,S)= v (1 -cos O) H(t-p/c,

7riv/-1p2 /T
2

- 1/Cp 2

-R -Il i1 T - 2c} (0.108)P+(c)sgn(x +P+()Sg(X) + 11 CI

This is the diffracted wave. It is a cylindrical wave radiating from the origin at time

t = 0, which is the arrival time of the incident wave.

We have seen here the application of the Cagniard-de Hoop method to a "nontra-

ditional" problem. The transformation from (k, w) to (p, s) was seen to have a new

feature-the interplay of the rotation of contour with a singularity (a pole) of the

integra-d. Also, for this problem, the body wave manifests itself through a pole of

the integrand and the saddle point of w(p, x, z) gave rise to the edge-diffracted wave.

This is in contrast with layered-media problems where the saddle point gives rise to

the body wave.

CONCLUSIONS

We have proposed an approach to the Cagniard method using a complex time

domain. We have attempted to show that there are advantages to promoting the

time domain to such "equal status" with the slowness domain. We avoid the usual

folding of contour in the slowness domain because we also believe that there are

advantages to having both endpoints of integration at infinity. Deformation of the

original contour of integration onto the Cagniard path on which the exponent is real

is equivalent to closing down the image contour in the r-dolain on the real axis.

It was shown in this process that a particular saddle point and its associated paths

of steepest ascent play a crucial role in the analysis. The original contour and the
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contour made up of these two ascent paths define a primary p-domain whose image,

the primary 7-domain, is central to the analysis of deformation of contour. Indeed,

the pair of steepest ascent paths will always form the tails of the usual Cagniard

paths in the p-domain and will make up those paths in their entirety when there

are no other singularities of the integrand in the primary p-domain. When there are

singularities in the primary p-domain, their images appear in the primary "r-domain

and the closing down of the image contour around the real axis in that domain must

take account of these singularities.

We have also addressed the problem of transforming an integral solution in the

(k, w) domain into an integral solution in the (p, s) domain. It was shown here that

careful analysis allows us to address noncausal problems as well as the causal ones

normally treated by starting with one-sided Laplace transforms.
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